
ResearchCompendia Documentation
Release 1.3.1

ResearchCompendia Contributors

June 03, 2014

Contents

1 ResearchCompendia 3
1.1 Introduction and Goals . 3
1.2 Project Structure . 3
1.3 Resources . 4
1.4 Acknowledgements . 4
1.5 References . 4

2 Project Structure 5
2.1 Compendia . 5
2.2 API . 6

3 Contributing 11
3.1 Contributing Code . 11
3.2 Reviewing Code and Concepts . 11
3.3 Reporting Bugs . 12
3.4 Give us feeback . 12
3.5 Write Documentation . 12

4 Getting Started with Development 13
4.1 Getting Code . 13
4.2 Installing Dependencies . 13
4.3 Setting up the Environment . 14
4.4 Preparing the Database . 14
4.5 Launching ResearchCompendia . 15
4.6 Making Changes . 15
4.7 Reviewing Changes . 15
4.8 Trying out Vagrant . 16

5 Deployment 17
5.1 Initial Setup . 17
5.2 Creating A Release . 17
5.3 Deploying a Release . 18
5.4 Miscellanea . 18

6 Credits 21
6.1 Core Team . 21
6.2 Contributors . 21

7 History 23

i

7.1 1.3.1 (2014-06-03) . 23
7.2 1.3.0 . 23
7.3 1.2.1 (2014-05-12) . 23
7.4 1.2.0 (2014-04-14) . 24
7.5 1.1.0 (2014-03-06) . 24
7.6 1.0.0 (2013-12-18) . 24

8 Indices and tables 25

ii

ResearchCompendia Documentation, Release 1.3.1

Contents:

Contents 1

ResearchCompendia Documentation, Release 1.3.1

2 Contents

CHAPTER 1

ResearchCompendia

A proof of concept for a research compendia webapp.

1.1 Introduction and Goals

This is a project to allow scientists to create research compendium 1 comprising all relevant narrative, code, and data
to make their research truly reproducible. Our goal is allow and teach researchers to document the computational
portions of their research methods as thoroughly as they would document a tabletop experiment. We want our tools to
fulfill these goals:

The application has the following goals.

• We will make it possible to archive all of the data, codes, documentation, parameters, and environmental settings
linked with published research in a versioned form.

• We will support the verification and validation processes by providing for the execution of shared code and the
visualization of results.

• We want to help and encourage researchers to manage their research in a way that makes it mixable and exe-
cutable.

• Most of all we wish to make these tools heavily automated, and easy to access and utilize to lessen the exertion
required from already overburdened academic researchers in the process of publishing fully reproducible work.

Imagine if all the materials in a research project could be continuously packaged and deployed with no snags preventing
use and refinement by anyone. We could help make research accessible to everyone.

1.2 Project Structure

This is a django project with the following structure.

• home: this handles the landing page, faq, and similar concerns that don’t call for separate apps.

• users: this handles users and profiles by using django-allauth and cookiecutter-django’s user template

• compendia: this handles the archiving and representation of a compendium.

• lib: this holds code that does not call for an app

• api: this handles our service apis.

1 Gentleman, Robert, and Duncan Temple Lang. 2007. “Statistical Analyses and Reproducible Research.” Journal of Computational and
Graphical Statistics 16 (1): 1–23. doi:10.1198/106186007X178663. http://www.tandfonline.com/doi/abs/10.1198/106186007X178663.

3

ResearchCompendia Documentation, Release 1.3.1

1.3 Resources

• Free software: MIT License

• Technical Documentation: http://researchcompendia.readthedocs.org

• Issue tracker: https://github.com/researchcompendia/researchcompendia/issues

• Wiki: https://github.com/researchcompendia/researchcompendia/wiki

• IRC: #researchcompendia

1.3.1 Development Environments

• http://researchcompendia.org

• http://labs.researchcompendia.org

1.4 Acknowledgements

Make a separate acknowledgements page?

1.5 References

4 Chapter 1. ResearchCompendia

http://opensource.org/licenses/MIT
http://researchcompendia.readthedocs.org
https://github.com/researchcompendia/researchcompendia/issues
https://github.com/researchcompendia/researchcompendia/wiki
https://kiwiirc.com/client/irc.freenode.net/?nick=rcguest\T1\textbar {}?#researchcompendia
http://researchcompendia.org
http://labs.researchcompendia.org

CHAPTER 2

Project Structure

ResearchCompendia is a Django project that contains apps for organizing users and their compendia. It also has the
basic functionality provided by Django and many common Django packages.

• compendia: this handles the presentation and archiving of a research compendium.

• api: this handles our service apis.

• lib: this holds utilities that do not call for an app

• home: this handles the landing page, faq, and similar concerns that don’t call for separate apps.

• users: this handles users and profiles

2.1 Compendia

For this prototype, we’ve started with a few simple models to represent research compendia and related metadata.
Here are a few of the most salient models.

5

ResearchCompendia Documentation, Release 1.3.1

The starting point for a compendium is an Article. An Article contains high level information about a compendium.

• reference information to the original material for use in citations

• a “code and data abstract” description

• links to archives of compendium materials such as code archives, data archives, and documentation

• link to archive of the verification package. This is only editable by admins.

• DOI for the original material as well as DOIs for the compendium materials.

• taxonomic information

• licenses for code and data

Articles with verification packages can be run via the verification service API. Each run of an article results in a
Verification record that links back to its Article. Our prototype for now stores only a few fields. In the future,
ResearchCompendia will use Sumatra as a service and will consume serialized Sumatra records for each run. At
which point we will deprecate our own verification model.

2.2 API

2.2.1 /api/v1/dois/

This service accepts a json dictionary { ‘doi’: <doi> } and performs a crossref request to return a json dictionary
corresponding to compendium attributes. This is used on the compendium creation page to auto-populate values. I

6 Chapter 2. Project Structure

http://neuralensemble.org/sumatra/

ResearchCompendia Documentation, Release 1.3.1

made it an API rather than a part of the compendia creation view so that we wouldn’t make the user wait on the django
framework for populating the form in the backend before returning it to the template.

2.2.2 /api/v1/verification/id /

We have a primitive verification API implementation proof-of-concept that was done mostly to test out interface design
rather than serve as an example of how to do verifications. See Design Limitations and Future Plans below for more
details on the next verification proof-of-concept.

• POST: submits a request to create a new Verification for Article id

GET

GET returns a json representations of the most recent Verification results for Article id

curl -X GET “http://hostname/api/v1/verification/11/”

Example:

{"verifications":
[
{

"archive_file_url": "/media/results/025a8ae48fdbd220fccccb879f4d1b4e-2014-04-03-15-42-37/verification.zip",
"archive_info": {

"output_files": [{ "bytes": 101, "file": "pizza_order.json", "size": "101B" }]
},
"created": "2014-04-03T20:42:37.288Z",
"id": 52,
"parameters": {},
"requestid": "messageidnotusedyet",
"status": "unknown",
"stderr": "",
"stdout": "{’attending’: 33, ’pizzas’: {’cheese’: 3, ’meat’: 3, ’vegan’: 1, ’veg’: 4}}\n\n 33 people will show up (guess)\n 3 cheese pizzas\n 3 meat pizzas\n 4 vegetarian pizzas\n 1 vegan pizzas\n \n"

},
// and so on ...

]
}

POST

A POST request for an Article with a verification package will trigger an execution to create a new Verification.

This example request is a no-op since no new values are passed in the parameters field. It will just return a message
about default parameters being used.

curl -X POST “http://hostname/api/v1/verification/11/”:

{"message": "Request was made with default parameters. Fetched cached results."}

This example triggers an actual run even though the parameters field is empty since the functionality to check cached
parameters is not yet built. If anything is passed, the code runs.

curl -v -X POST –data parameters=”” “http://hostname/api/v1/verification/11/”:

{
"message": "ok",
"output_dir": "/tmp/compendia4NlIJ9/hellopizza/compendiaoutput",

2.2. API 7

ResearchCompendia Documentation, Release 1.3.1

"output_files": [],
"path_to_zipped_output": "/tmp/compendia4NlIJ9/hellopizza/compendiaoutput.zip",
"requestid": "messageidnotusedyet",
"status": 201,
"stderr": "Traceback (most recent call last):\n File \"/tmp/compendia4NlIJ9/hellopizza/main\", line 111, in <module>\n main(args)\n File \"/tmp/compendia4NlIJ9/hellopizza/main\", line 91, in main\n results = pizza_order(parameters)\n File \"/tmp/compendia4NlIJ9/hellopizza/main\", line 39, in pizza_order\n rsvp_count = parameters.get(’rsvp_count’, 60)\nAttributeError: ’unicode’ object has no attribute ’get’\n",
"stdout": "",
"zipbytes": 22,
"zipsize": "22B"

}

Verification Package

Verification packages are created by administators based on the code and data archives provided by authors. Example
verification packages can be found in our github repo, researchcompendia/meta-analyses. This repo is a fork of Tim
Churches’s repo containing meta-analyses on the benefits of reproducible research. This fork adds some verification
scaffolding that we’ve packaged up to use as an example. A simpler example is available in this gist.

The structure of a verification package

• main: an executable called main that can be invoked

• default.json: a json file that contains default parameters

• compendiaoutput/: a directory where main deposits results

• A build mechanism that creates main (and is able to pull in specific dependencies)

Design Limitations

For now the verification service is not a real service. The logic lives in a verification utility inside of the django app.

The current implementation was done in a one-off demo to demonstrate a request/response. It has severe limitations,
and is absolutely not production ready. For the demo, the api request kicks of a verification library call, and blocks
until the job is finished. The result is persisted by our django ORM, and our django app archives the result files.

• It is synchronous and blocking.

• It does not enforce SLAs

• It does not use sandboxes.

• It only runs on the machine that the webapp is deployed to.

• It only works with the default django file storages system (problems with s3 backed storages)

• It requires manual work for installing dependencies.

• It requires manual work for creating verification packages, and this will be confusing to users.

• etc.

Future Plans

A sensible glimpse in to the future can see that the verification functionality will change such that

• it runs apart from the django app

• it supports asynchronous requests

• it uses sandboxing

8 Chapter 2. Project Structure

https://github.com/researchcompendia/meta-analyses
https://gist.github.com/codersquid/9960588

ResearchCompendia Documentation, Release 1.3.1

• it has a saner method for dependency management

• it enforces SLAs

Moving the library to a service

Our verification library could be pulled out of this django project and turned in to a separate component that can be
called as a service. The current django app passes a dictionary to the verification library since this is easily changed to
a json message. For example, instead of calling a lib, it can be changed to make HTTP requests to the service.

Asynchronous requests

One approach for handling requests in a non-blocking fashion would be to use Celery for queuing tasks. We already
use Celery for handling our link checking jobs, and I’ve been planning to do this for the next verification proof-of-
concept.

Sandboxing and dependency management

We’ve been experimenting with using Docker for handling sandboxing as well as dependency management. For
another verification proof-of-concept, we could create a lightweight service that talks to the docker api – actually,
while I was spending time working on less fun features, someone already did an example of this and perhaps we could
just take advantage of his project, Spin-docker.

VMs and containers aren’t a silver bullet for deploying reproducible environments, and I should link to some discussion
on all of this. TODO

Usability? Ha. I was thinking we’d need to do a lot of hand-holding at first, and also that we’d write up cookiecutters
to help people generate skeleton packages (and also to automate that step when possible). We need to watch users
attempting to use the system to advance from there.

Enforcing SLAs

If we continue to use the Django REST Framework we can take advantage of its ability to handle authentication,
permissions, and throttling.

2.2. API 9

http://docs.celeryproject.org/en/latest/index.html
http://spin-docker.readthedocs.org/en/latest/
http://cookiecutter.readthedocs.org/en/latest/
http://django-rest-framework.org/

ResearchCompendia Documentation, Release 1.3.1

10 Chapter 2. Project Structure

CHAPTER 3

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
You can contribute in many ways.

3.1 Contributing Code

Before you get started, remember that it is easier for us to accept pull requests that are narrow in scope and easy to
review. Ideally we want to see pull requests with a commit that is a logical changeset so plan to work in this fashion.

When committing a change, please include the issue number in your commit comment. This helps us track the progress
in the related issue. This works like so

$ git commit CONTRIBUTING.rst -m ‘improved the contributing docs for #1’

TODO: define some guidelines for what makes something easy to review.

Getting Started with Development

3.1.1 Pick up labeled tasks

We label some issues to guide contributions.

bitesized These bugs can be done by people with a beginning level of skill.

intermediate These bugs can be done easily by people with an intermediate level or skill or by patient
beginners who get frequent review.

fly-by These can be done by people who are experts but don’t have much time to devote to long term
tasks.

brainstorming These are tasks where we welcome discussion about the ideas mentioned in the issue

If you see a task that is not already being worked on, feel free to claim it by leaving a comment and start working.

For more advanced tasks and tasks without these labels, please talk to us first.

3.2 Reviewing Code and Concepts

We are always learning. Review code in our repository and suggest improvements and alternatives to our approaches.

Look through pull requests and review the changes.

11

https://github.com/researchcompendia/researchcompendia/issues?labels=bitesized&page=1&state=open
https://github.com/researchcompendia/researchcompendia/issues?labels=intermediate&page=1&state=open
https://github.com/researchcompendia/researchcompendia/issues?labels=fly-by&page=1&state=open
https://github.com/researchcompendia/researchcompendia/issues?labels=brainstorming&page=1&state=open

ResearchCompendia Documentation, Release 1.3.1

Help us by discussing issues we’ve tagged with the brainstorming label

3.3 Reporting Bugs

Report bugs in our issue tracker. https://github.com/researchcompendia/researchcompendia/issues.

If you are reporting a bug, please include:

• Your browser information.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

3.4 Give us feeback

Talk to us about features you’d like. Let us know how we are doing. You can send us email from the contact form or
let us know by filing an issue in the issue tracker.

3.5 Write Documentation

We could always use more documentation, whether as part of the official docs, in docstrings, or even on the web in
blog posts, articles, and such.

12 Chapter 3. Contributing

https://github.com/researchcompendia/researchcompendia/issues?labels=brainstorming&page=1&state=open
https://github.com/researchcompendia/researchcompendia/issues
http://researchcompendia.org/contact/
https://github.com/researchcompendia/researchcompendia/issues

CHAPTER 4

Getting Started with Development

Note: If you have just started, this may seem confusing, and that is okay. No one starts out understanding how to do
all of this. Additionally, anything that is confusing is a bug in our docs. Please open an issue to let us know where we
need to improve things.

Ready to contribute code? Here’s how to set up ResearchCompendia for local development.

4.1 Getting Code

Fork the repository and check out your fork and add our repo as a remote:

$ git clone https://github.com/YOURACCOUNT/researchcompendia.git
$ cd researchcompendia
$ git remote add parent https://github.com/researchcompendia/researchcompendia.git

4.2 Installing Dependencies

1. Install your local copy into a virtualenv. Here is one way to do it:

$ cd researchcompendia/
$ virtualenv venv
$ source venv/bin/activate
$ pip install -r requirements/ci.txt

You can also use virtualenvwrapper if you have it is installed. It is convenient, though not required.

2. Set up environment variables. Once you have the environment varialbes set up, you are ready to set up the
database.

3. We use Postgres as our database backend. We haven’t written docs to walk though setting up Postgres yet. If
you are unfamiliar with this process, you could consider using sqlite locally event thought our preferences is to
use postgres in all environments. If you’d like to use sqlite, set up your DATABASE_URL environment variable
to have a path to a file name that will hold your database. for example:

’sqlite:////path/to/my/site/root/researchcompendia.db’

13

http://virtualenvwrapper.readthedocs.org/en/latest/

ResearchCompendia Documentation, Release 1.3.1

4.3 Setting up the Environment

These are the environment variables that are used in the site settings listed along with their defaults. For any default
that doesn’t apply to you, make an environment variable with your preferred setting.

You are required to create SECRET_KEY environment variable.

If you use fabric to provision a vagrant box, it will generate a SECRET_KEY for you.

Environment Variable Default Setting
ADMINS compendia@example.com
AWS_ACCESS_KEY_ID ‘’
AWS_SECRET_ACCESS_KEY ‘’
AWS_STORAGE_BUCKET_NAME compendiaexamplebucket
DATABASE_URL postgres://:5432/researchcompendia
DJANGO_BROKER_URL hamqp://guest:guest@localhost:5672//
DJANGO_CELERY_DISABLE_RATE_LIMITSTrue
DJANGO_CELERY_RESULT_BACKENDcache+memcached://127.0.0.1:11211/
DJANGO_CELERY_RESULT_SERIALIZERjson
DJANGO_CELERY_TASK_SERIALIZERjson
DJANGO_CELERY_TIMEZONE US/Central
CROSSREF_PID ‘’
DEBUG True
DEFAULT_FILE_STORAGE django.core.files.storage.FileSystemStorage
DEFAULT_FROM_EMAIL compendia@example.com
DISQUS_API_KEY ‘none’
DISQUS_WEBSITE_SHORTNAME researchcompendiaorg
BONSAI_URL http://127.0.0.1:9200
EMAIL_BACKEND django.core.mail.backends.console.EmailBackend
MAILGUN_ACCESS_KEY ‘’
MAILGUN_SERVER_NAME ‘’
MEDIA_ROOT normpath(join(PROJECT_ROOT, ‘media’))
MEDIA_URL if using the s3boto storages then ‘%s/media/’ % S3_URL,

otherwise /media/
REMOTE_DEBUG False
SECRET_KEY no default. will blow up if not set
SITE_ID 1
STATICFILES_STORAGE django.contrib.staticfiles.storage.StaticFilesStorage
STATIC_ROOT normpath(join(PROJECT_ROOT, ‘staticfiles’))
STATIC_URL if using the s3boto storages then ‘%s/static/’ % S3_URL,

otherwise /static/

There are a couple of places where settings are hard-coded in to templates. These need to be fixed. Meanwhile, you
will need to change or remove the google analytics and addthis pubid codes.

• Our google analytics tracking code is hardcoded in templates/base.html.

• Our addthis pubid is hardcoded in templates/compendia/detail.html.

4.4 Preparing the Database

Set up the database by running:

14 Chapter 4. Getting Started with Development

mailto:compendia@example.com
mailto:compendia@example.com
http://127.0.0.1:9200

ResearchCompendia Documentation, Release 1.3.1

$ cd companionpages
$./manage.py syncdb --migrate
$./manage.py loaddata fixtures/*

4.5 Launching ResearchCompendia

Once the database is set up, you can start the app:

$./manage.py runserver

Or perhaps you would like to have detailed stacktraces and messages:

$./manage.py runserver --traceback -v 3

4.6 Making Changes

Now that you have the code, a virtualenv, and the proper environment variables, you are ready to make your changes
locally.

1. Make a topic branch for your changes. For example, if you wanted to add twitter logins to the site, you could
make a branch named twitterlogin:

$ git checkout -b twitterlogin

2. Periodically update your branch from the parent develop branch. Use git rebase (not git merge):

$ git fetch parent
$ git rebase parent/develop

We prefer a pull request with one commit rather than many small commits. To avoid making a request with
many commits, you can do an interactive rebase and use fixup.:

$ git rebase -i parent/develop

3. Check that your changes pass style check and automated tests:

$ make test

4. Demonstrate your changes. It can be helpful to share work you are running locally from your own machine so
that other people can help test. PageKite is a free/libre open source software project that can do this for you.
This QuickStart shows how.

5. Commit your changes and push your branch to up to your fork on GitHub.:

$ git add .
$ git commit -m "Adds twitter login for #123"
$ git push origin twitterlogin

Now you are ready to make a pull request.

4.7 Reviewing Changes

Submit a pull request through the GitHub website to submit it for review. Before you submit a pull request, check that
it meets these guidelines:

4.5. Launching ResearchCompendia 15

https://help.github.com/articles/interactive-rebase
https://pagekite.net/
http://pagekite.net/support/quickstart/

ResearchCompendia Documentation, Release 1.3.1

0. The pull request should be easy to review.

1. The pull request should include tests

2. Check https://travis-ci.org/researchcompendia/researchcompendia/pull_requests and make sure that the tests
pass

3. If the pull request adds functionality, the docs and/or comments should be updated.

4.8 Trying out Vagrant

Note: This section is for developers who have experience with Vagrant and Fabric

If you want to use Vagrant clone the researchcompendia-deployment repo. It contains fabric files and a Vagrantfile
that pulls down a debian wheezy VM from vagrantcound:

$ git clone https://github.com/researchcompendia/researchcompendia-deployment.git
$ cd researchcompendia-deployment
$ vagrant up
$ fab vagrant provision

Provision is not idempotent, so running it twice will probably fail in interesting ways. If you want to start over need
to run vagrant destroy first.

Provision will set up the vagrant box in the same way that a production box is set up.

16 Chapter 4. Getting Started with Development

https://travis-ci.org/researchcompendia/researchcompendia/pull_requests
https://github.com/researchcompendia/researchcompendia-deployment

CHAPTER 5

Deployment

Note: If you are not a core developer you likely do not need these instructions. These are instructions for production
deployment. You may be looking for: Getting Started with Development

Warning: This process is in flux and not fully automated.

5.1 Initial Setup

Clone the researchcompendia-deployment repo:

$ git clone https://github.com/researchcompendia/researchcompendia-deployment.git
$ cd researchcompendia-deployment
$ virtualenv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

The top of the fabric.py file has settings for hostnames, port numbers, etc. Check these to verify that they apply to
you. If they do not, change them as appropriate. Each fabric command should be prefaced with the name of the
environment, dev, staging, prod, vagrant are available environments. If this is the first time you are setting up a box,
run the provision task. This example provisions staging:

(venv)$ fab staging provision

Until the deployment and configuration process completely automated, there are manual steps to go through for a
first install and deployment. You’ll want to create a django superuser. Log in to the box, sudo su tyler, source the
environment variables, run the createsuperuser command:

./manage.py createsuperuser

5.2 Creating A Release

Releases are created with the git flow release subcommands (part of git-flow).

Version numbers: We use a semantic versioning scheme.

All of the changes you want to go in to a release should be in the development branch. Once everything is there run
(the version for this example is 1.0.0):

17

https://github.com/researchcompendia/researchcompendia-deployment
http://danielkummer.github.io/git-flow-cheatsheet/
http://semver.org/

ResearchCompendia Documentation, Release 1.3.1

$ git flow release start 1.0.0

Once you’ve started a release, edit the HISTORY.rst file and bump the version in __init__.py and commit the changes.
Then run:

$ git flow release finish 1.0.0

This will merge everything in develop to master and create a tag for you. Once that is done, you need to push the
changes:

$ git checkout master
$ git push
$ git push --tags
$ git checkout develop
$ git push

5.3 Deploying a Release

Check release notes for any required updates to environment variables, database migrations, static files changes. Ac-
tivate your researchcompendia-deployment virtualenv and run the deploy command:

(venv)$ fab staging deploy:1.0.0

That command is for the simplest case of a change. It doesn’t migrate the database, for example. There is a fab
command for that, migrate

5.4 Miscellanea

Convenient packages like htop and multitail are installed. Use sudo htop for a handy way to observe and control
running processes.

The provision task creates a directory layout in the tyler user’s home directory organized in the following way:

$ tree -L 2 site
site
-- bin
| -- celeryworker.sh
| -- check_downloads.sh
| -- environment.sh
| -- runserver.sh
-- logs
| -- log_files.yml
-- tyler

Logs for nginx, celery, gunicorn, supervisor, cron, django are in the logs/ directory.:

logs
-- celery_worker.log logs for celery and tasks
-- cron_checkdownloads.log logs to see that the download link checker was called
-- gunicorn_supervisor.log gunicorn/django console logs
-- log_files.yml papertrail remote_syslog config file
-- tyler.access.log nginx access log
-- tyler.error.log nginx error log

18 Chapter 5. Deployment

ResearchCompendia Documentation, Release 1.3.1

Remote logging, the webapp, and celery are controled by supervisor. run sudo supervisorctl status to see a list of
statuses.:

$ sudo supervisorctl status
celery EXITED Jan 16 11:21 PM
remote_syslog RUNNING pid 13411, uptime 1 day, 0:05:17
researchcompendia RUNNING pid 13828, uptime 1 day, 0:01:17

5.4. Miscellanea 19

ResearchCompendia Documentation, Release 1.3.1

20 Chapter 5. Deployment

CHAPTER 6

Credits

6.1 Core Team

• Sheila Miguez <sheila@researchcompendia.org>

• Jennifer Seiler

• Victoria Stodden

6.2 Contributors

• @benmarwick

• You?

21

mailto:sheila@researchcompendia.org
https://github.com/benmarwick

ResearchCompendia Documentation, Release 1.3.1

22 Chapter 6. Credits

CHAPTER 7

History

7.1 1.3.1 (2014-06-03)

• Fixes #196, /search/ without query parameters caused a 500.

7.2 1.3.0

• Adds a Demos page where we can list ongoing demos. Currently we have a Table of Contents demo and some
executability demos.

• The demo Table of Contents demo allows for an admin to generate a table of contents based on entries that
categorize compendia types. The current demo shows a result card style with no stripped down informationc
ompared to the main site result card style.

• Adds facets based on compendium type and primary research fields. These are stackable in the url, but the UI
only drills down via links for now.

• Upgrades insecure requirements. Started tracking requirements via the https://requires.io service.

• Adds microformat to our header for rel-vcs as specified by https://joeyh.name/rfc/rel-vcs/

• template refactoring – pulled out some browse, facet, and pagination code in to separate files to be included in
other templates. DRY

• minor style changes

7.3 1.2.1 (2014-05-12)

7.3.1 New Features and content

• Facetted search based on primary research field and compendium type #184

• Started Project Structure docs

7.3.2 Fixes

• User detail page broken due to old url pattern #182

23

https://github.com/researchcompendia/researchcompendia/issues/196
https://requires.io
https://joeyh.name/rfc/rel-vcs/
https://github.com/researchcompendia/researchcompendia/pull/184
https://github.com/researchcompendia/researchcompendia/blob/develop/docs/project.rst
https://github.com/researchcompendia/researchcompendia/issues/182

ResearchCompendia Documentation, Release 1.3.1

7.4 1.2.0 (2014-04-14)

• First pull request from an external contributor! #168 fixes two typos in the FAQ. Thanks @benmarwick.

• First iteration with execution with some limited ability to do parameter passing, with execution history

• DOI minting for data and code

7.5 1.1.0 (2014-03-06)

7.5.1 New features and content

• Users can log in with Github and Persona

• Citations: compendia pages list citation information and users are reminded to cite code and data when they go
to download code or data. #60

• Additional fields are auto-completed with the DOI auto-fill

• Added a Resources page with information about reproducible science and research compendia

• Compendia abstracts can use markdown

7.5.2 Fixes

• Citations show et. al. for papers with more than 5 authors #161

• Styling fixes for side navigation

7.6 1.0.0 (2013-12-18)

First talk! Now that we’ve had the first talk about this, let’s have 1.0.0!

Not a lot of user-facing changes for this release. We’ve Renamed project ResearchCompendia from the pre-release
tyler name, and renamed the repo to go with that.

• We have tagging on creation, but tags are not yet used for search and browsing.

• We have simple text search that searches through authors, title, abstract

• We have a simple compendium creation form with DOI autocompletition.

• We have some prelimary developer docs that discuss contributions and development.

• We have user profile pages so that users can view a list of their compendia.

24 Chapter 7. History

https://github.com/researchcompendia/researchcompendia/pull/168
https://github.com/benmarwick
https://github.com/researchcompendia/researchcompendia/issues/60
https://github.com/researchcompendia/researchcompendia/issues/161

CHAPTER 8

Indices and tables

• genindex

• search

25

	ResearchCompendia
	Introduction and Goals
	Project Structure
	Resources
	Acknowledgements
	References

	Project Structure
	Compendia
	API

	Contributing
	Contributing Code
	Reviewing Code and Concepts
	Reporting Bugs
	Give us feeback
	Write Documentation

	Getting Started with Development
	Getting Code
	Installing Dependencies
	Setting up the Environment
	Preparing the Database
	Launching ResearchCompendia
	Making Changes
	Reviewing Changes
	Trying out Vagrant

	Deployment
	Initial Setup
	Creating A Release
	Deploying a Release
	Miscellanea

	Credits
	Core Team
	Contributors

	History
	1.3.1 (2014-06-03)
	1.3.0
	1.2.1 (2014-05-12)
	1.2.0 (2014-04-14)
	1.1.0 (2014-03-06)
	1.0.0 (2013-12-18)

	Indices and tables

